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Abstract 
 
Following the COVID-19 pandemic, online purchasing has grown rapidly. The logistics industry has 
prioritized route planning, which relates to the Capacitated Vehicle Routing Problem with Pickup and 
Delivery (CVRPPD), to reduce operational costs. However, existing studies have not yet examined route 
planning in cases where packages are returned due to reasons such as incorrect addresses, absence of the 
recipient, or refusal of acceptance. This research, therefore, develops a mathematical model for logistics 
route planning with capacity constraints, which supports both pickup and delivery while accounting for the 
probability of package returns.  The authors studied maps of various sized cities in the United States and 
found that the probability of a package return is correlated with the probability of delivery failure followed 
a sigmoid curve. The calculated probability of failure showed similar results across all routing methods. In 
terms of distance and processing time, the Saving Algorithm yielded results comparable to the Nearest 
Neighbor Heuristic but significantly lower than Simulated Annealing.  Regarding the probability of failure, 
the Saving Algorithm provided slightly lower results than the other methods. This mathematical model can 
be practically applied to route planning, helping to increase efficiency and reduce transportation costs, while 
also providing assurance to operators regarding package transportation in the event of returns. 
 
Keywords: Capacitated Vehicle Routing Problem with Pickup and Delivery (CVRPPD); 
Simulated Annealing; Saving Algorithm; Nearest Neighbor Heuristic; Mathematical model; 
Returned package 
 

 
 
I. INTRODUCTION 
 
The Vehicle Routing Problem (VRP) has been a 
subject of study for several decades (Dantzig & 
Ramser, 1959). It focuses on finding the optimal 
route for vehicle scheduling. However, variations 
in the definition of an "optimal route," along with 
increasing auxiliary factors, have led to a variety of 
approaches for finding suitable routes, since in the 
real world, transportation often encounters various 
issues such as traffic conditions, accidents, and 
road damage. 
 
Here we focus on the problem of package returns. 
These are defined as failed deliveries, where the 
package either remains in the vehicle and must be 
brought back to the distribution center, or enters the 
return process later. This problem arises due to 

incorrect addresses, the absence of the recipient, or 
the recipient's refusal for various reasons. Package 
retention in a capacity-constrained vehicle can lead 
to errors in the delivery schedule for the 
Capacitated Vehicle Routing Problem for Pickup 
and Delivery (CVRPPD) during transport. This 
research aims to study the route distance and test 
the feasibility of rerouting from the original plan 
before the start of the trip, as failed deliviers can 
prevent pickups along the route. 
 
Package returns from online orders are a common 
problem in many countries. A report by Loqate 
(2021) found that failed deliveries from online 
purchases accounted for 8%, 6%, and 7% in the 
United States, the United Kingdom, and Germany, 
respectively, in 2020. The total annual cost 
calculated from returned packages in these three 
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countries was approximately 16 million Thai 
Baht.1 This demonstrates that package returns 
impact both cost and transportation route 
management, posing a significant current challenge 
for the global logistics industry. 
 
Currently, several methods are used to construct 
routes for solving vehicle routing problems. This 
study discusses three popular methods: Nearest 
Neighbor Heuristic (NNH), Savings Algorithm, 
and Simulated Annealing (SA). Their general 
procedures and characteristics are: 
 
Nearest Neighbor Heuristic (NNH) is a simple 

method that selects the next closest point from the 
current location to build a route, repeating the 
process until all points are covered. The 
advantage of this method is its low complexity 
and fast processing. However, research by 
Harahap (2023) indicates that NNH often yields 
longer distances compared to other methods. 

Savings Algorithm is a process used to construct 
vehicle routes by merging two routes to create a 
new one, based on comparing the distance to the 
original routes. If the new merged route results in 
a shorter total distance, that new route is selected. 
This method typically results in routes with 
shorter distances while simultaneously reducing 
processing time (Paessens, 1988). 

Simulated Annealing (SA) improves existing 
routes through a stochastic process that considers 
a Temperature parameter. In the initial phase of 
the process, when the temperature is high, the 
method still has a chance to select and continue 
with a new route, even if it slightly increases the 
total distance. However, as the temperature 
decreases after multiple iterations, the method 
only accepts routes that result in a shorter total 
distance. Wei (2018) found that Simulated 
Annealing yields better results than Tabu Search 
and Genetic Algorithm when used to solve the 
Capacitated Vehicle Routing Problem (CVRP). 

 

 
1 Loqate (2021) states that this cost occurred in the 
U.S. ($193,730), the U.K. (£68,084), and Germany 
(€144,354). When converted using 2020 exchange 

These three methods possess distinct 
characteristics and limitations. A comparison of 
these three methods will help to identify which 
method is best suited for improving vehicle routes 
in different scenarios. 
 
 
II. METHODS 
 
1: Defining the CVRPPDRP Model 
To address the stated problem, it is necessary to 
understand its characteristics. The authors adapted 
the mathematical model of the Capacitated Vehicle 
Routing Problem with Pickup and Delivery 
(CVRPPD), which involves the dual tasks of 
package delivery and pickup, originally studied by 
Kui-Ting Chen et al. (2015). This model was 
refined by incorporating additional variables and 
constraints to account for package returns, 
resulting in a mathematical model that aligns with 
the research objectives: the Capacitated Vehicle 
Routing Problem with Pickup and Delivery for 
Returned Packages (CVRPPDRP). 
 
Graph: A graph is defined as 𝐺 = (𝑉, 𝐸), where: 

• 𝑉  =  {0,1,2, … , 𝑛} : The set of all vertices 
(nodes), representing road intersections 
which are proxies for customer locations. 
Node 0 is defined as the distribution depot. 

• 𝐸 =

0{𝑖, 𝑗}3
	𝑖, 𝑗	 ∈ 𝑉	, 𝑖~𝑗	

𝑖𝑓	𝑡ℎ𝑒𝑟𝑒	𝑖𝑠	𝑎	𝑟𝑜𝑎𝑑	𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔	𝑖	𝑎𝑛𝑑	𝑗	B

: The set of edges, representing roads 
connecting intersections. 

 
Sets 

• 𝑃 ⊆ 𝑉 − {0}	: The set of pickup nodes. 
• 𝐷 ⊆ 𝑉 − {0}: The set of delivery nodes. 
• 𝑃 ∩ 𝐷 = 	∅: A condition that states the sets 

of pickup and delivery nodes have no 
common members. 

• 𝑆𝐵 ⊆ 𝐷: The set of delivery nodes that may 
result in returned packages. 

rates, the total is approximately 16 million Thai 
Baht per year. 
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Parameters 
• 𝑐!": The travel distance from node i to node 

j. 
• 𝑞!: The change in the number of packages in 

the vehicle at node i (negative for delivery, 
positive for pickup). 

• 𝑄: The maximum package capacity of the 
delivery vehicle. 

• 𝑝: The probability of a package return 
occurring at delivery node . 

 
Decision Variables 

• 𝑥!": A Binary variable equal to 1 if the 
vehicle travels along the path from node i to 
node j. 

• 𝑢!: The load (number of packages) in the 
vehicle after passing node i. 

• 𝑓!: A binary variable equal to 1 if a failure 
occurs at node because the vehicle cannot 
pick up a package due to reaching full 
capacity, and 0 otherwise. 

• 𝑟!: A binary variable equal to 1 if node i is a 
return node (𝑖 ∈ 𝑆𝐵) 

 
Objective Function 
 
 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒	 SS(𝑐!"

 

"∈%

 

!∈%

⋅ 𝑥!") (1) 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒	 S(𝑝 ∙ 𝑓!)
!∈&'

 (2) 

 
Equation (1) minimizes total travel distance, while 
equation (2) quantifies delivery-failure probability 
due to returns p. 
 
Constraints 

 S𝑥!"

 

"∈%

= 1	 ∀𝑖 ∈ 𝑃 (3) 

 S𝑥!"

 

"∈%

= 1	 ∀𝑖 ∈ 𝐷 (4) 

 S𝑥("

 

"∈%

= 1 (5) 

 S𝑥!(

 

!∈%

= 1 (6) 

 S𝑥!"

 

"∈%

=S𝑥"!

 

"∈%

	 ∀𝑖 ∈ 𝑉 (7) 

 0 ≤ 𝑢! ≤ 𝑄	 ∀𝑖 ∈ 𝑉 (8) 

 
𝑢! + 𝑞" ≤ 𝑢" + 𝑄 ⋅ Y1 − 𝑥!"Z 

∀𝑖, 𝑗 ∈ 𝑉 
(9) 

 
𝑢! ≥ 𝑢" + 𝑞!%𝑥"! − 𝑟!) − 𝑄 ⋅ %1 − 𝑥"!) 

∀𝑖, 𝑗 ∈ 𝑉 
(10) 

 𝑝 = 𝑃(𝑖 ∈ 𝑆𝐵),	 ∀𝑖 ∈ 𝐷 (11) 
 𝑄 ≥ 𝑢! ∙ (1 − 𝑓!), 	 ∀𝑖 ∈ 𝑃 (12) 
 

• Equations (3) and (4) specify that the vehicle 
visits each pickup and delivery node exactly 
once. 

• Equations (5) and (6) state that the vehicle 
must begin and end its journey at the 
distribution depot (node 0). 

• Equation (7) ensure path continuity (if a 
vehicle arrives at a node, it must depart from 
that node). 

• Equation (8) limits the load inside the 
vehicle to no less than zero and no more than 
the maximum capacity. 

• Equation (9) prevents subtours (routes that 
do not include any customers or  do not start 
and end at the depot) by employing Miller-
Tucker-Zemlin constraints (Desrochers, M. 
& Laporte, G., 1991). 

• Equation (10) controls the package load in 
the vehicle both during route construction 
and for verification after simulating return 
events. 

• Equation (11) defines the probability p of a 
package return at a delivery node (D). 

• Equation (12) ensures that the load at a 
pickup node i (in set P) does not exceed the 
capacity, Q. If it does, a failure (fi = 1) is 
registered. 

 
After the route is constructed, Equations (2), (11), 
and (12) are applied to calculate the probability of 
failure. The primary focus of this research is to find 
the shortest route, with the secondary benefit being 
the minimization of the probability of transport 
failure. 
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2: Defining City Data and Study Points 
Data from the National Household Travel Survey, 
USA, indicates that the average household 
typically orders packages online once a week 
(Cokyasar, T., 2022). In this study, road 
intersections are used as proxies for customer 
locations. In this study, each road intersection is 
treated as a representative household location. For 
analyzing deliveries on a single day, one-seventh 
of all intersections are randomly selected as pickup 
or delivery points. 
 
City map data are imported from OpenStreetMap 
and converted into an edge-weighted graph for 
which nodes represent intersections, edges 
represent road segments, and edge weights 
represent the road distance between intersections. 
One node is randomly selected as the depot. The 
remaining nodes, totaling one-seventh of the total 
number of nodes, are designated as customer 
nodes. One-fifth of the customer nodes are 
designated as pickup nodes (P), and the remaining 
nodes are designated as delivery nodes (D). A 
sample map is shown in Figure 1. 
 
The demand at each node, (change in package 
load), is defined: delivery nodes () are assigned a 
value of , and pickup nodes are assigned a random 
value between 1 and 4. Next, the demand at each 
node is defined—i.e., the load change qᵢ at point i. 
Delivery nodes (D) are assigned a demand of −1, 
while pickup nodes have randomly assigned values 
from 1 to 4. Vehicle capacity (Q) is set to the larger 
of the total number of parcels to be delivered and 
the total number of parcels to be picked up. This  
 

 
Figure 1.  A sample map of Piedmont, California, USA, 
created with OSMnx. 

reflects practical daily operations: the logistics 
system knows each morning how many parcels 
must be delivered and how many will be picked up, 
and selecting a vehicle with appropriate capacity 
increases delivery efficiency. The probability of 
package return is also defined to align with real-
world scenarios where incorrect delivery or other 
issues can lead to package returns. 
 
3: Route Construction Methods 
All routes are defined as starting and ending at the 
depot, and the following route-finding methods 
were selected for study: 
 
3.1 Nearest Neighbor Heuristic (NNH)  Route 
construction using NNH starts at the depot and 
proceeds to the closest neighboring node from the 
current location. This is repeated until the last node 
in the set of all nodes (V) is reached. To satisfy the 
model's requirement for a closed path, the final 
node is defined as the depot. 
 
3.2 Saving Algorithm Following Clarke, G. and 
Wright, J.R. (1964) and Namfon Papun and 
Phattranit Kaewpradit (2019), the Saving 
Algorithm proceeds as follows: 
 

1. Computing savings values: A distance 
matrix (cij) between all nodes is first created 
using nx.shortest_path_length, a function in 
NetworkX that employs the Dijkstra 
algorithm to find the shortest distance. 
Initially, two separate routes are formed: 
from the depot (0) to customer i and back (0, 
i, 0), and from the depot to customer j and 
back (0, j, 0). The savings value for 
connecting customers i and j is computed as 
the reduction in cost achieved by combining 
the two routes into a single route (0, i, j, 0), 
as shown in Figure 2 (b), compared to the 
cost of two separate routes (0, i, 0) and (0, j, 
0), as shown in Figure 2 (a). The savings 
value is calculated using Equation (13):  
 

𝑆!" =	𝑑(! +	𝑑(" −	𝑑!"  (13) 

 
where 0 represents the depot, Sij is the saving  
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between customers i and j, and dij is the 
distance between customers i and j. 
 

2. Sorting the saving values: The values of are 
sorted from highest to lowest. 
 

3. Inserting new customers into existing 
routes: If the saving value is positive, 
meaning the combined route's total distance 
is shorter than the sum of the two original 
routes, the two routes are merged into a new 
single route. Customers i and j are combined 
into the same transportation route (0, i, j, 0), 
as shown in Figure 2 (b). 

 
4. Repeat: The process of inserting customers 

is repeated until only one continuous route 
remains. 
 

3.3 Simulated Annealing (SA)  Simulated 
Annealing (SA) is used to find the best route from 
the depot through all the pickup and delivery 
nodes. The process begins with generating a 
random initial route. The route is then repeatedly 
improved by performing two-opt swaps (swapping 
the positions of two nodes) and calculating the new 
distance. If the new route is shorter, it is accepted. 
If the distance is longer, the route is accepted with 
a probability that decreases according to the 
cooling rate. The cooling process reduces the 
chance of accepting worse routes, which helps the 
algorithm avoid local minima and find the global 
best solution. For this study, the initial 
‘temperature’ was set to 10,000, the cooling rate 
was 0.995, and the minimum temperature was 10-3. 
 

 

     (a)                    (b) 
 

Figure 2. (a) Two separate round trips for delivery to all 
points. (b) Combining delivery points into one route. 
 
 
 
 

4: Route Analysis 
 
Algorithm 1: Failure Simulation 

1. Define FUNCTION ‘simulate_failures(route, q_i, 
return_prob, vehicle_capacity, seed_value)’: 
    2. Set random seed to seed_value 
    3. Initialize load = number of delivery nodes 
    4. Initialize failures = 0 
    5. For each node in route: 
        6. IF node is in pickup_nodes THEN: 
            7. Retrieve demand from q_i[node] 
            8. Increment load by demand 
        9. ELSE IF node is in delivery_nodes THEN: 
            10. Retrieve delivery_amount from q_i[node] 
            11. Incremnt load by delivery_amount 
            12. IF random value < return_prob THEN: 
                13. Increment load by 1 (simulate product 
return) 
        14. IF load > vehicle_capacity OR load < 0 
THEN: 
            15. Increment failures by 1 
            16. BREAK the loop 
    17. RETURN failures 
18. Initialize total_failures = 0 
19. Initialize total_tests = 0 
20. For seed_value = 1 to 10001: 
    21. Initialize failures_per_seed = 0 
        22. Call ‘simulate_failures(route_full, q_i, 
return_prob, vehicle_capacity, seed_value)’ 
        23. Increment failures_per_seed by returned 
failures 
    24. Increment total_failures by failures_per_seed 
    25. Increment total_tests by num_tests_per_seed 
26. Calculate per_failure_rate = (total_failures / 
total_tests) * 100 
27. Output per_failure_rate 

 
Description of key variables 

• route: Sequence of nodes in the route. 
• q_i: Demand at node i. 
• return_prob: Probability of a package return. 
• vehicle_capacity (Q): Maximum vehicle 

capacity (). 
• seed_value: Random seed used for repeated 

data generation. 
• total_failures: Total count of failures across 

all random seeds. 
• total_tests: Total number of tests performed. 
• per_failure_rate: Percentage of delivery 

failures. 
• pickup_nodes: Pickup nodes (P). 
• delivery_nodes: Delivery nodes (D). 
• route_full: The complete route used in the 

test. 



Thailand Scholastic Journal of Science 6 (1)   Jan-Dec, 2025              www.tsjos.org 

 

 6 

The data obtained from each routing method is 
analyzed by testing each route against scenarios 
involving package returns at various points. The 
probability of package return is set to 0.3, with all 
delivery nodes having the same return probability. 
(The value 0.3 is a selected parameter for this 
study; a realistic value should be used for practical 
application.) 
 
A transport is considered an immediate failure if a 
return event prevents the vehicle from being able to 
perform a subsequent pickup according to the 
original route plan. After the tests, the resulting 
values—total distance and the percentage 
probability of transport failure—are compared 
across the two objective functions. This analysis is 
based on Algorithm 1, which is derived from 
Equations (11) and (12) and implemented as the 
simulated_failures function. The function begins 
by initializing the vehicle load (load) to the sum of 
all packages to be delivered and setting the failure 
counter (failures) to 0. 
 
For every node in the sequential route, if the node 
is a pickup node, the vehicle load is increased by 
the pickup demand, qi. If the node is a delivery 
node, a random real number between 0 and 1 is 
generated. If the random value is less than the 
return probability, a return occurs, and the package 
load in the vehicle remains unchanged, but if a 
return does not occur, the package load is 
decreased by 1. After each transaction, the vehicle 
load is checked. If the load does not exceed the 
vehicle capacity, the process loops to the next node 
in the route. If the load exceeds the capacity or 
drops below 0, the loop immediately terminates, 
and the failure value is recorded as 1. If the route is 
completed successfully, the failure value is 
recorded as 0. Each route is tested 10,000 times 
using different random seeds. The total failures are 
summed and divided by the total number of tests to 
yield the percentage probability of failure due to 
package returns. 
 
 
 
 
 

III. RESULTS AND DISCUSSION 
 
1: Sample City Data 
The OSMnx library was used to import city data 
from OpenStreetMap to study the optimal route-
finding model for package delivery, considering 
the case of package returns. The size of the sample 
city was used as a variable to compare the model's 
performance, which may differ across various city 
sizes defined by the number of road intersections 
(nodes). From Table 1, a total of 23 cities in the 
United States were studied, with city sizes ranging 
from 6.80 to 29.64 square kilometers. 
 

Name of         
Sample City 

Total 
Number 
of Inter-
sections  

Number of 
Customer 

Nodes 

Number 
of Edges 
(Roads) 

Crested Butte, CO 98 14 292 
Leavenworth, WA 113 16 319 
Calistoga, CA 221 31 558 
Moab, UT 239 34 620 
Sausalito, CA 258 36 635 
Marfa, TX 272 38 888 
Carmel-by-the-Sea, CA 283 40 881 
Jackson, WY 334 47 916 
Whitefish, MT 319 45 867 
Piedmont, CA 352 50 944 
Breckenridge, CO 373 53 875 
Healdsburg, CA 455 65 1,146 
Bar Harbor, ME 603 86 1,430 
Park City, UT 606 86 1463 
Taos, NM 620 88 1,500 
Boerne, TX 718 102 1736 
Ouray, CO 749 107 1775 
Big Bear Lake, CA 866 123 2220 
Ashland, OR 927 132 2497 
Boulder City, NV 976 139 2358 
Truckee, CA 1027 146 2420 
Sedona, AZ 1032 147 2385 
Los Gatos, CA 1082 154 2441 
 

Table 1.  Data on the cities used for the study. 
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2: Repetitive Testing for Mean Value 
After analyzing the data and obtaining three test 
results for each city, repetitive testing was 
performed to prevent experimental bias, as the 
routes were generated from different random 
samplings. The mean values were recorded for 
subsequent steps. 
 
To determine the required number of repetitions for 
minimizing the error in the mean value, the city of 
Crested Butte, Colorado (with a total of 98 inter- 
 

 
Figure 3. Number of repetitions and average total route 
distance for the three methods tested for Crested Butte. 
 

 
Figure 4.  Number of repetitions and average 
probability of failure for Crested Butte. 
 

 
Figure 5.  Number of repetitions and average processing 
time for Crested Butte. 
 

sections) was selected for this preliminary test.  
The number of repetitions was increased from 1 to 
100, and the mean and standard deviation were 
calculated at each step. 
 
The results from 100 repetitions showed that the 
outcomes for all the graphs in Figures 3-8 (mean 
total distance, mean probability of failure, mean 
processing time, and standard deviation for each 
variable) tended towards a steady-state condition as 
the number of repetitions increased. 
 

 
Figure 6.  Number of repetitions and standard deviation 
of the total route distance for Crested Butte. 
 

 
Figure 7.  Number of repetitions and standard deviation 
of the probability of failure for Crested Butte. 
 

 
Figure 8.  Number of repetitions and standard deviation 
of the processing time for Crested Butte, Colorado. 
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Initially, especially within the first 10–20 
repetitions, the values for algorithms SA and NNH 
exhibited higher fluctuations than the Saving 
Algorithm for some variables. This reflects a 
higher initial sensitivity to change and instability of 
the variables early on. However, after 
approximately 50 repetitions, the results for all 
algorithms and variables clearly showed a 
reduction in variance and entered a high-stability 
range. 
 

The standard deviation graphs (Figures 6-8) 
demonstrated that all three algorithms tended to 
reduce the volatility of their results with more 
repetitions. The Saving Algorithm exhibited the 
lowest variance from the beginning, while SA and 
NNH, despite starting with higher volatility, 
achieved stability later. This suggests that at 
approximately 50 repetitions, all three models 
provide stable and reliable values. Therefore, 
increasing the number of repetitions beyond 50 is 
unlikely to yield significant changes in the results,  
 

Name of         
Sample City 

Number 
of Inter-
sections  

Total Route Distance (m) 

NNH Saving SA 
Crested Butte, CO 98 6594.26 5975.48 5857.30 

Leavenworth, WA 113 7934.05 7073.88 6640.79 

Calistoga, CA 221 20340.68 18356.76 18305.49 

Moab, UT 239 25300.93 22011.64 21580.02 

Sausalito, CA 258 21316.74 18438.08 19143.54 

Marfa, TX 272 15566.37 13955.38 13552.38 

Carmel-by-the-Sea, CA 283 14647.64 12624.75 12563.87 

Jackson, WY 334 33922.35 28705.02 29893.32 

Whitefish, MT 319 32454.29 28564.28 28873.43 

Piedmont, CA 352 25705.40 21772.30 23311.06 

Breckenridge, CO 373 66256.69 59060.36 67362.94 

Healdsburg, CA 455 41012.65 35388.94 43241.81 

Bar Harbor, ME 603 127145.38 109821.84 149619.99 

Park City, UT 606 88204.72 77903.88 105835.20 

Taos, NM 620 63072.84 52873.42 73279.52 

Boerne, TX 718 84543.07 73762.75 129359.45 

Ouray, CO 749 409919.77 344498.56 512178.44 

Big Bear Lake, CA 866 82151.38 68491.63 123,928.8
9 

Ashland, OR 927 71781.17 62782.27 122488.43 

Boulder City, NV 976 101276.22 85590.53 171532.38 

Truckee, CA 1027 181676.95 96398.51 398599.84 

Sedona, AZ 1032 111506.39 162393.00 192711.14 

Los Gatos, CA 1082 118229.50 101999.99 208874.46 
 

Table 2.  The route distance for each city generated by 
the three different routing methods. 

making 50 an appropriate threshold to reduce 
testing time and resources without compromising 
data accuracy. 
 
3: Experimental Results 
The data on the total number of intersections 
(nodes) is treated as representing all house 
locations on the roads between those intersections, 
simplifying the analysis. City data was then 
defined, and routes were generated. 
 
Table 2 presents the route distances for each 
method. It was found that the distance generated by 
each method is directly proportional to the total 
number of intersections. Two cities—Ouray, CO 
and Truckee, CA—were found to be outliers with 
unusually high distances. 
 
4: Analysis of Experimental Results 
The charts and tables presented below clearly 
demonstrate that each route generation method  
 

Name of         
Sample City 

Number 
of Inter-
sections 

Probability of Failure (%) 

NNH Saving SA 
Crested Butte, CO 98 51.01 52.23 59.27 

Leavenworth, WA 113 70.73 57.36 63.68 

Calistoga, CA 221 74.07 64.55 71.11 

Moab, UT 239 60.27 67.88 63.26 

Sausalito, CA 258 67.47 69.66 62.93 

Marfa, TX 272 66.66 58.40 63.44 

Carmel-by-the-Sea 283 63.15 58.89 66.19 

Jackson, WY 334 71.26 74.44 71.75 

Whitefish, MT 319 61.10 54.70 69.30 

Piedmont, CA 352 65.11 62.33 75.44 

Breckenridge, CO 373 70.64 60.27 69.32 

Healdsburg, CA 455 74.29 78.79 67.26 

Bar Harbor, ME 603 74.41 54.25 65.60 

Park City, UT 606 73.48 63.07 69.60 

Taos, NM 620 69.91 62.84 62.92 

Boerne, TX 718 68.06 74.57 68.73 

Ouray, CO 749 75.97 74.90 77.48 

Big Bear Lake, CA 866 73.86 65.48 61.22 

Ashland, OR 927 64.75 68.97 67.50 

Boulder City, NV 976 67.33 72.95 71.55 

Truckee, CA 1027 64.30 63.54 65.83 

Sedona, AZ 1032 73.25 70.23 70.34 

Los Gatos, CA 1082 69.73 76.65 70.14 
 

Table 3.  Probability of route failure in each city 
generated by the different routing methods, at a return 
probability of 30%. 
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yields distinct results, with the following 
observable characteristics for each approach 
 
4.1 Nearest Neighbor Heuristic (NNH)  The 
results of the NNH algorithm, shown in Figure 10, 
indicates that the resulting distance exhibits a direct 
linear relationship with the total number of nodes, 
with NNH showing a slope of about 110 
meters/node. In terms of the probability of failure, 
there is high scatter, but the trend remains within 
the range of 60 to 80%, irrespective of city size. 
Finally, due to its simplicity, NNH proved to be the 
routing method that required the least processing 
time for large cities, as shown in Table 3. 
 
4.2 Saving Algorithm  Although the results for the 
Saving Algorithm method are quite similar to 
NNH, a closer inspection reveals that the resulting 
distance is slightly shorter on average, particularly 
in large cities (Figure 10). When considering the 
probability of failure, the Saving Algorithm 
yielded overall better results (lower failure rate)   
 

Name of 
Sample City 

Number 
of Inter-
sections 

Processing Time (s) 

NNH Saving SA 
Crested Butte, CO 98 1.15 0.58 8.88 

Leavenworth, WA 113 1.33 1.09 10.23 

Calistoga, CA 221 1.44 1.13 25.49 

Moab, UT 239 1.86 1.51 28.76 

Sausalito, CA 258 2.04 1.81 30.81 

Marfa, TX 272 1.66 1.59 42.69 

Carmel-by-the-Sea, CA 283 2.82 2.49 45.74 

Jackson, WY 334 2.8 2.62 63.17 

Whitefish, MT 319 4.85 4.04 53.04 

Piedmont, CA 352 4.08 3.86 59.34 

Breckenridge, CO 373 3.72 5.13 77.53 

Healdsburg, CA 455 5.00 6.84 102.51 

Bar Harbor, ME 603 8.92 13.85 146.92 

Park City, UT 606 10.40 14.61 177.53 

Taos, NM 620 10.11 14.77 180.06 

Boerne, TX 718 14.60 16.55 254.13 

Ouray, CO 749 18.84 25.03 244.42 

Big Bear Lake, CA 866 27.77 38.18 362.97 

Ashland, OR 927 34.22 48.33 513.94 

Boulder City, NV 976 28.63 49.14 564.07 

Truckee, CA 1027 34.81 56.57 577.27 

Sedona, AZ 1032 38.64 57.46 517.80 

Los Gatos, CA 1082 46.04 65.72 603.01 

Table 4.    Processing time of the routes in each city 
generated by the three different routing methods. 

 

 
Figure 9.  Total number of intersections and total route 
distance, with a linear trendline. 
 

 
Figure 10.  Total number of intersections and total route 
distance, with a linear trendline, excluding outliers. 
 

 
Figure 11.  Total number of intersections and the 
probability of failure, with a linear trendline. 
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than the other methods, with the difference being 
clearly noticeable in small cities, as indicated in 
Table 4. 
 
4.3 Simulated Annealing (SA)  The results for 
Simulated Annealing (SA) showed a short distance 
for small cities, but for large cities, the trendline 
clearly indicates that the distance increases rapidly 
with increasing number of nodes, with Figure 10 
showing a slope of around 200 meters/node. In the 
case of failure probability, SA exhibited a high 
degree of scatter but remained constant within the 
60 to 80% range, similar to NNH. Finally, the SA 
method required a significantly longer processing 
time compared to the others, as illustrated in Table 
3 and Figures 12 and 13.  
 

 
Figure 12.  Total number of intersections and the 
processing time, with a polynomial trendline. 
 

 
Figure 13.  Total number of intersections and the 
processing time, with a linear trendline. 

4.4 Probability of Package Return  Figures 14-16 
display the results of testing different values for the 
probability of package return, p. At p = 0, the 
probability of failure is 0%, indicating that if no 
returns occur, the system will not experience a 
failure. For values between p = 0.05 – 0.35, there is 
a significant increase in the probability of failure. 
At the higher end of this range, the rate of growth 
in failure probability decreases before approaching 
100% failure at p = 0.40 – 0.50. The relationship 
between the probability of return and the 
probability of failure is clearly nonlinear and 
closely resembles a sigmoid curve. 
 

 
Figure 14.  Package return probability and failure 
probability for the NNH routing method. 
 

 
Figure 15 . Package return probability and failure 
probability for the Saving Algorithm routing method. 
 

 
Figure 16.  Package return probability and failure 
probability for the SA routing method. 
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IV. CONCLUSION 
 
The study showed that the developed mathematical 
models can be effectively used to determine the 
optimal vehicle route for transportation when there 
is a probability of package returns. This outcome is 
explained by classifying the routing approaches. 
Following Liu F. et al. (2023), NNH and the Saving 
Algorithm fall under the same category of 
constructive heuristics, which build the route from 
scratch, leading to generally similar resulting 
distances. Simulated Annealing (SA), however, is 
a metaheuristic method, which works by iteratively 
improving an initially random route. Consequently, 
in large cities with a significant number of nodes, 
it is statistically more challenging for the stochastic 
process of SA to randomly discover a pattern that 
results in a shorter distance. Nevertheless, when 
SA is applied to smaller cities with fewer nodes, it 
can successfully find patterns that yield shorter 
distances, leading to results that are better than both 
NNH and the Saving Algorithm. 
In terms of the probability of failure, the results 
showed a generally similar trend across all route 
generation methods. However, in small cities, the 
Saving Algorithm was found to have a slightly 
lower probability of failure compared to the other 
methods. Regarding processing time, NNH, being 
the simplest method, consumed the least time, with 
the Saving Algorithm requiring a comparable 
amount of time, while SA consistently 
demonstrated a trend of significantly higher 
processing time. In the study of varying 
probabilities of package return, the relationship 
between the probability of return and the 
probability of failure was found to be nonlinear and 
closely approximated a sigmoid curve that 
approaches its maximum value at p = 0.40 – 0.50. 
 
It must be noted that this research did not directly 
solve the problem using multi-objective 
optimization. The routes generated by each 
algorithm were assessed a posteriori using the 
failure rate function through simulation. Therefore, 
the reduction of the failure objective (Equation 2) 
is an indirect result derived from the route's 
structure, and it was not optimized during the route 
construction process itself. Finally, in terms of 

practical application, the user needs to define what 
the "optimal route" means for their purpose, 
whether it is prioritized based on distance, 
probability of failure, or time required for route 
generation. 
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