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Abstract

Following the COVID-19 pandemic, online purchasing has grown rapidly. The logistics industry has
prioritized route planning, which relates to the Capacitated Vehicle Routing Problem with Pickup and
Delivery (CVRPPD), to reduce operational costs. However, existing studies have not yet examined route
planning in cases where packages are returned due to reasons such as incorrect addresses, absence of the
recipient, or refusal of acceptance. This research, therefore, develops a mathematical model for logistics
route planning with capacity constraints, which supports both pickup and delivery while accounting for the
probability of package returns. The authors studied maps of various sized cities in the United States and
found that the probability of a package return is correlated with the probability of delivery failure followed
a sigmoid curve. The calculated probability of failure showed similar results across all routing methods. In
terms of distance and processing time, the Saving Algorithm yielded results comparable to the Nearest
Neighbor Heuristic but significantly lower than Simulated Annealing. Regarding the probability of failure,
the Saving Algorithm provided slightly lower results than the other methods. This mathematical model can
be practically applied to route planning, helping to increase efficiency and reduce transportation costs, while
also providing assurance to operators regarding package transportation in the event of returns.

Keywords: Capacitated Vehicle Routing Problem with Pickup and Delivery (CVRPPD);
Simulated Annealing; Saving Algorithm; Nearest Neighbor Heuristic; Mathematical model;
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I. INTRODUCTION

The Vehicle Routing Problem (VRP) has been a
subject of study for several decades (Dantzig &
Ramser, 1959). It focuses on finding the optimal
route for vehicle scheduling. However, variations
in the definition of an "optimal route," along with
increasing auxiliary factors, have led to a variety of
approaches for finding suitable routes, since in the
real world, transportation often encounters various
issues such as traffic conditions, accidents, and
road damage.

Here we focus on the problem of package returns.
These are defined as failed deliveries, where the
package either remains in the vehicle and must be
brought back to the distribution center, or enters the
return process later. This problem arises due to

incorrect addresses, the absence of the recipient, or
the recipient's refusal for various reasons. Package
retention in a capacity-constrained vehicle can lead
to errors in the delivery schedule for the
Capacitated Vehicle Routing Problem for Pickup
and Delivery (CVRPPD) during transport. This
research aims to study the route distance and test
the feasibility of rerouting from the original plan
before the start of the trip, as failed deliviers can
prevent pickups along the route.

Package returns from online orders are a common
problem in many countries. A report by Loqate
(2021) found that failed deliveries from online
purchases accounted for 8%, 6%, and 7% in the
United States, the United Kingdom, and Germany,
respectively, in 2020. The total annual cost
calculated from returned packages in these three
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countries was approximately 16 million Thai
Baht.! This demonstrates that package returns
impact both cost and transportation route
management, posing a significant current challenge
for the global logistics industry.

Currently, several methods are used to construct
routes for solving vehicle routing problems. This
study discusses three popular methods: Nearest
Neighbor Heuristic (NNH), Savings Algorithm,
and Simulated Annealing (SA). Their general
procedures and characteristics are:

Nearest Neighbor Heuristic (NNH) is a simple
method that selects the next closest point from the
current location to build a route, repeating the
process until all points are covered. The
advantage of this method is its low complexity
and fast processing. However, research by
Harahap (2023) indicates that NNH often yields
longer distances compared to other methods.

Savings Algorithm is a process used to construct
vehicle routes by merging two routes to create a
new one, based on comparing the distance to the
original routes. If the new merged route results in
a shorter total distance, that new route is selected.
This method typically results in routes with
shorter distances while simultaneously reducing
processing time (Paessens, 1988).

Simulated Annealing (SA) improves existing
routes through a stochastic process that considers
a Temperature parameter. In the initial phase of
the process, when the temperature is high, the
method still has a chance to select and continue
with a new route, even if it slightly increases the
total distance. However, as the temperature
decreases after multiple iterations, the method
only accepts routes that result in a shorter total
distance. Wei (2018) found that Simulated
Annealing yields better results than Tabu Search
and Genetic Algorithm when used to solve the
Capacitated Vehicle Routing Problem (CVRP).

! Logate (2021) states that this cost occurred in the
U.S. ($193,730), the U.K. (£68,084), and Germany
(€144,354). When converted using 2020 exchange
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These  three  methods  possess  distinct
characteristics and limitations. A comparison of
these three methods will help to identify which
method is best suited for improving vehicle routes
in different scenarios.

II. METHODS

1: Defining the CVRPPDRP Model

To address the stated problem, it is necessary to
understand its characteristics. The authors adapted
the mathematical model of the Capacitated Vehicle
Routing Problem with Pickup and Delivery
(CVRPPD), which involves the dual tasks of
package delivery and pickup, originally studied by
Kui-Ting Chen et al. (2015). This model was
refined by incorporating additional variables and
constraints to account for package returns,
resulting in a mathematical model that aligns with
the research objectives: the Capacitated Vehicle
Routing Problem with Pickup and Delivery for
Returned Packages (CVRPPDRP).

Graph: A graph is defined as G = (V, E), where:
o V =1{0,1,2,..,n}: The set of all vertices
(nodes), representing road intersections
which are proxies for customer locations.
Node 0 is defined as the distribution depot.
o F =

{{i.j}

: The set of edges, representing roads
connecting intersections.

i,j €V, i~j

Sets

e P c V —{0}: The set of pickup nodes.

e D <V —{0}: The set of delivery nodes.

e PND = @: A condition that states the sets
of pickup and delivery nodes have no
common members.

e SB € D: The set of delivery nodes that may
result in returned packages.

rates, the total is approximately 16 million Thai
Baht per year.

if there is aroad connecting i and j
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Parameters

e ¢;j: The travel distance from node i to node
J-

e q;: The change in the number of packages in
the vehicle at node i (negative for delivery,
positive for pickup).

e (: The maximum package capacity of the
delivery vehicle.

e p: The probability of a package return
occurring at delivery node .

Decision Variables

e Xx;;: A Binary variable equal to 1 if the
vehicle travels along the path from node i to
node j.

e u;: The load (number of packages) in the
vehicle after passing node i.

e f;: A binary variable equal to 1 if a failure
occurs at node because the vehicle cannot
pick up a package due to reaching full
capacity, and 0 otherwise.

e 7;: A binary variable equal to 1 if node i is a
return node (i € SB)

Objective Function

Minimize Z E(Cij “Xij) (1)

i€V jev
Minimize 2 (- fo) (2)

iESB

Equation (1) minimizes total travel distance, while
equation (2) quantifies delivery-failure probability
due to returns p.

Constraints
jev
jev
D o =1 ©
jev
Exio =1 (6)
i€V
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2xU=2xﬁ VieV (7)

JEV Jev

0<w;<Q VievV )

ui+quuj+Q'(1—xij) (9)
Vi,jEV

w2 +q;(x; - 1) - Q- (1—x;) (10)
Vi,jEV

p=P({ESB), Vi€D (11)

Q=2u;-(1—-f;), Vie€EP (12)

¢ Equations (3) and (4) specify that the vehicle
visits each pickup and delivery node exactly
once.

e Equations (5) and (6) state that the vehicle
must begin and end its journey at the
distribution depot (node 0).

e Equation (7) ensure path continuity (if a
vehicle arrives at a node, it must depart from
that node).

e Equation (8) limits the load inside the
vehicle to no less than zero and no more than
the maximum capacity.

e Equation (9) prevents subtours (routes that
do not include any customers or do not start
and end at the depot) by employing Miller-
Tucker-Zemlin constraints (Desrochers, M.
& Laporte, G., 1991).

e Equation (10) controls the package load in
the vehicle both during route construction
and for verification after simulating return
events.

e Equation (11) defines the probability p of a
package return at a delivery node (D).

e Equation (12) ensures that the load at a
pickup node i (in set P) does not exceed the
capacity, Q. If it does, a failure (f; = 1) is
registered.

After the route is constructed, Equations (2), (11),
and (12) are applied to calculate the probability of
failure. The primary focus of this research is to find
the shortest route, with the secondary benefit being
the minimization of the probability of transport
failure.
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2: Defining City Data and Study Points

Data from the National Household Travel Survey,
USA, indicates that the average household
typically orders packages online once a week
(Cokyasar, T., 2022). In this study, road
intersections are used as proxies for customer
locations. In this study, each road intersection is
treated as a representative household location. For
analyzing deliveries on a single day, one-seventh
of all intersections are randomly selected as pickup
or delivery points.

City map data are imported from OpenStreetMap
and converted into an edge-weighted graph for
which nodes represent intersections, edges
represent road segments, and edge weights
represent the road distance between intersections.
One node is randomly selected as the depot. The
remaining nodes, totaling one-seventh of the total
number of nodes, are designated as customer
nodes. One-fifth of the customer nodes are
designated as pickup nodes (P), and the remaining
nodes are designated as delivery nodes (D). A
sample map is shown in Figure 1.

The demand at each node, (change in package
load), is defined: delivery nodes () are assigned a
value of , and pickup nodes are assigned a random
value between 1 and 4. Next, the demand at each
node is defined—i.e., the load change ¢; at point i.
Delivery nodes (D) are assigned a demand of —1,
while pickup nodes have randomly assigned values
from 1 to 4. Vehicle capacity (Q) is set to the larger
of the total number of parcels to be delivered and
the total number of parcels to be picked up. This

o L 4 ' o ® Depot
. ’ & \ > e  Pickup Points
o-:. £/ LA .. o e Delivery Points
/ .® o . .
' .:. . o g — ) > .
- . e .
} \ °
'S ~‘o'. . & ?
/S e o<
3 R * o, ® »
’ } e
. . 5
[ ] ad

Figure 1. A sample map of Piedmont, California, USA,
created with OSMnx.
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reflects practical daily operations: the logistics
system knows each morning how many parcels
must be delivered and how many will be picked up,
and selecting a vehicle with appropriate capacity
increases delivery efficiency. The probability of
package return is also defined to align with real-
world scenarios where incorrect delivery or other
issues can lead to package returns.

3: Route Construction Methods

All routes are defined as starting and ending at the
depot, and the following route-finding methods
were selected for study:

3.1 Nearest Neighbor Heuristic (NNH) Route
construction using NNH starts at the depot and
proceeds to the closest neighboring node from the
current location. This is repeated until the last node
in the set of all nodes (V) is reached. To satisfy the
model's requirement for a closed path, the final
node is defined as the depot.

3.2 Saving Algorithm Following Clarke, G. and
Wright, JR. (1964) and Namfon Papun and
Phattranit Kaewpradit (2019), the Saving
Algorithm proceeds as follows:

1. Computing savings values: A distance
matrix (c;) between all nodes is first created
using nx.shortest path length, a function in
NetworkX that employs the Dijkstra
algorithm to find the shortest distance.
Initially, two separate routes are formed:
from the depot (0) to customer i and back (0,
i, 0), and from the depot to customer j and
back (0, j, 0). The savings value for
connecting customers i and j is computed as
the reduction in cost achieved by combining
the two routes into a single route (0, i, j, 0),
as shown in Figure 2 (b), compared to the
cost of two separate routes (0, i, 0) and (0, j,
0), as shown in Figure 2 (a). The savings
value is calculated using Equation (13):

Sij = dOi + d0] - dU (13)

where 0 represents the depot, Sj is the saving
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between customers i and j, and dj is the
distance between customers i and ;.

2. Sorting the saving values: The values of are
sorted from highest to lowest.

3. Inserting new customers into existing
routes: If the saving value is positive,
meaning the combined route's total distance
is shorter than the sum of the two original
routes, the two routes are merged into a new
single route. Customers i and j are combined
into the same transportation route (0, i, j, 0),
as shown in Figure 2 (b).

4. Repeat: The process of inserting customers
is repeated until only one continuous route
remains.

3.3 Simulated Annealing (SA) Simulated
Annealing (SA) is used to find the best route from
the depot through all the pickup and delivery
nodes. The process begins with generating a
random initial route. The route is then repeatedly
improved by performing two-opt swaps (swapping
the positions of two nodes) and calculating the new
distance. If the new route is shorter, it is accepted.
If the distance is longer, the route is accepted with
a probability that decreases according to the
cooling rate. The cooling process reduces the
chance of accepting worse routes, which helps the
algorithm avoid local minima and find the global
best solution. For this study, the initial
‘temperature’ was set to 10,000, the cooling rate
was 0.995, and the minimum temperature was 107,

(a) (b)

Figure 2. (a) Two separate round trips for delivery to all
points. (b) Combining delivery points into one route.
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4: Route Analysis

|Algorithm 1: Failure Simulation

1. Define FUNCTION ‘simulate_failures(route, q i,
return_prob, vehicle capacity, seed value)’:
2. Set random seed to seed _value
3. Initialize load = number of delivery nodes
4. Initialize failures = 0
5. For each node in route:
6. IF node is in pickup nodes THEN:
7. Retrieve demand from q_i[node]
8. Increment load by demand
9. ELSE IF node is in delivery_nodes THEN:
10. Retrieve delivery amount from q_i[node]
11. Incremnt load by delivery _amount
12. IF random value < return_prob THEN:
13. Increment load by 1 (simulate product
return)
14. IF load > vehicle capacity OR load <0
THEN:
15. Increment failures by 1
16. BREAK the loop
17. RETURN failures
18. Initialize total failures =0
19. Initialize total tests =0
20. For seed_value =1 to 10001:
21. Initialize failures_per seed =0
22. Call ‘simulate _failures(route full, q i,
return_prob, vehicle capacity, seed value)’
23. Increment failures_per_seed by returned
failures
24. Increment total _failures by failures_per seed
25. Increment total _tests by num_tests_per seed
26. Calculate per failure rate = (total failures /
total tests) * 100
27. Output per_failure rate

Description of key variables

¢ route: Sequence of nodes in the route.

e q i: Demand at node i.

e return_prob: Probability of a package return.

e vehicle capacity (Q): Maximum vehicle
capacity ().

e seed value: Random seed used for repeated
data generation.

o total failures: Total count of failures across
all random seeds.

o total tests: Total number of tests performed.

o per_failure rate: Percentage of delivery
failures.

¢ pickup nodes: Pickup nodes (P).

e delivery nodes: Delivery nodes (D).

e route full: The complete route used in the
test.
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The data obtained from each routing method is
analyzed by testing each route against scenarios
involving package returns at various points. The
probability of package return is set to 0.3, with all
delivery nodes having the same return probability.
(The value 0.3 is a selected parameter for this
study; a realistic value should be used for practical
application.)

A transport is considered an immediate failure if a
return event prevents the vehicle from being able to
perform a subsequent pickup according to the
original route plan. After the tests, the resulting
values—total distance and the percentage
probability of transport failure—are compared
across the two objective functions. This analysis is
based on Algorithm 1, which is derived from
Equations (11) and (12) and implemented as the
simulated failures function. The function begins
by initializing the vehicle load (load) to the sum of
all packages to be delivered and setting the failure
counter (failures) to 0.

For every node in the sequential route, if the node
is a pickup node, the vehicle load is increased by
the pickup demand, ¢;. If the node is a delivery
node, a random real number between 0 and 1 is
generated. If the random value is less than the
return probability, a return occurs, and the package
load in the vehicle remains unchanged, but if a
return does not occur, the package load is
decreased by 1. After each transaction, the vehicle
load is checked. If the load does not exceed the
vehicle capacity, the process loops to the next node
in the route. If the load exceeds the capacity or
drops below 0, the loop immediately terminates,
and the failure value is recorded as 1. If the route is
completed successfully, the failure value is
recorded as 0. Each route is tested 10,000 times
using different random seeds. The total failures are
summed and divided by the total number of tests to
yield the percentage probability of failure due to
package returns.
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III. RESULTS AND DISCUSSION

1: Sample City Data

The OSMnx library was used to import city data
from OpenStreetMap to study the optimal route-
finding model for package delivery, considering
the case of package returns. The size of the sample
city was used as a variable to compare the model's
performance, which may differ across various city
sizes defined by the number of road intersections
(nodes). From Table 1, a total of 23 cities in the
United States were studied, with city sizes ranging
from 6.80 to 29.64 square kilometers.

Name of N:E:zler Number of | Number
Sample City of Inter- Customer | of Edges
sections Nodes (Roads)
Crested Butte, CO 98 14 292
ILeavenworth, WA 113 16 319
Calistoga, CA 221 31 558
Moab, UT 239 34 620
Sausalito, CA 258 36 635
Marfa, TX 272 38 888
Carmel-by-the-Sea, CA 283 40 881
Jackson, WY 334 47 916
'Whitefish, MT 319 45 867
IPiedmont, CA 352 50 944
Breckenridge, CO 373 53 875
Healdsburg, CA 455 65 1,146
Bar Harbor, ME 603 86 1,430
Park City, UT 606 86 1463
Taos, NM 620 88 1,500
Boerne, TX 718 102 1736
Ouray, CO 749 107 1775
Big Bear Lake, CA 866 123 2220
IAshland, OR 927 132 2497
Boulder City, NV 976 139 2358
Truckee, CA 1027 146 2420
Sedona, AZ 1032 147 2385
Los Gatos, CA 1082 154 2441

Table 1. Data on the cities used for the study.
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2: Repetitive Testing for Mean Value

After analyzing the data and obtaining three test
results for each city, repetitive testing was
performed to prevent experimental bias, as the
routes were generated from different random
samplings. The mean values were recorded for
subsequent steps.

To determine the required number of repetitions for
minimizing the error in the mean value, the city of
Crested Butte, Colorado (with a total of 98 inter-
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Figure 3. Number of repetitions and average total route
distance for the three methods tested for Crested Butte.
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Figure 4. Number of repetitions and average
probability of failure for Crested Butte.
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Figure 5. Number of repetitions and average processing
time for Crested Butte.
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sections) was selected for this preliminary test.
The number of repetitions was increased from 1 to
100, and the mean and standard deviation were
calculated at each step.

The results from 100 repetitions showed that the
outcomes for all the graphs in Figures 3-8 (mean
total distance, mean probability of failure, mean
processing time, and standard deviation for each
variable) tended towards a steady-state condition as
the number of repetitions increased.
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Figure 6. Number of repetitions and standard deviation
of the total route distance for Crested Butte.
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Figure 7. Number of repetitions and standard deviation
of the probability of failure for Crested Butte.
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Initially, especially within the first 10-20
repetitions, the values for algorithms SA and NNH
exhibited higher fluctuations than the Saving
Algorithm for some variables. This reflects a
higher initial sensitivity to change and instability of
the variables early on. However, after
approximately 50 repetitions, the results for all
algorithms and variables clearly showed a
reduction in variance and entered a high-stability
range.

The standard deviation graphs (Figures 6-8)
demonstrated that all three algorithms tended to
reduce the volatility of their results with more
repetitions. The Saving Algorithm exhibited the
lowest variance from the beginning, while SA and
NNH, despite starting with higher volatility,
achieved stability later. This suggests that at
approximately 50 repetitions, all three models
provide stable and reliable values. Therefore,
increasing the number of repetitions beyond 50 is
unlikely to yield significant changes in the results,

Number

Name of Total Route Distance (m)
Sample City o Ir}ter- :
sections NNH Savmg SA

(Crested Butte, CO 98 6594.26 | 5975.48 | 5857.30

Leavenworth, WA 113 7934.05 | 7073.88 | 6640.79

(Calistoga, CA 221 20340.68 |18356.76 |18305.49
Moab, UT 239 25300.93 |22011.64 |21580.02
Sausalito, CA 258 21316.74 |18438.08 |19143.54
Marfa, TX 272 15566.37 | 13955.38 |13552.38
Carmel-by-the-Sea, CA| 283 14647.64 |12624.75 |12563.87
Jackson, WY 334 33922.35 (28705.02 |29893.32
Whitefish, MT 319 3245429 (28564.28 |28873.43
Piedmont, CA 352 25705.40 |21772.30 |23311.06
Breckenridge, CO 373 66256.69 |59060.36 |67362.94
Healdsburg, CA 455 41012.65 |35388.94 |43241.81

Bar Harbor, ME 603 127145.38 [109821.84 (149619.99
Park City, UT 606 88204.72 (77903.88 [105835.20
Taos, NM 620 63072.84 |52873.42 |73279.52
Boerne, TX 718 84543.07 |73762.75 [129359.45
Ouray, CO 749 409919.77 [344498.56 |512178.44
Big Bear Lake, CA 866 82151.38 |68491.63 |123,928.8

9

lAshland, OR 927 71781.17 |62782.27 |122488.43
Boulder City, NV 976 101276.22 | 85590.53 (171532.38
Truckee, CA 1027 181676.95 | 96398.51 (398599.84
Sedona, AZ 1032 111506.39 [162393.00 [192711.14
Los Gatos, CA 1082 118229.50 [101999.99 [208874.46

Table 2. The route distance for each city generated by
the three different routing methods.
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making 50 an appropriate threshold to reduce
testing time and resources without compromising
data accuracy.

3: Experimental Results

The data on the total number of intersections
(nodes) is treated as representing all house
locations on the roads between those intersections,
simplifying the analysis. City data was then
defined, and routes were generated.

Table 2 presents the route distances for each
method. It was found that the distance generated by
each method is directly proportional to the total
number of intersections. Two cities—Ouray, CO
and Truckee, CA—were found to be outliers with
unusually high distances.

4: Analysis of Experimental Results
The charts and tables presented below clearly
demonstrate that each route generation method

Name of Number |p, . phapility of Failure (%)
Sample City o Il}ter- :

sections | NNH |Saving SA
Crested Butte, CO 98 51.01 52.23 59.27
Leavenworth, WA 113 70.73 57.36 63.68
Calistoga, CA 221 74.07 64.55 71.11
Moab, UT 239 60.27 67.88 63.26
Sausalito, CA 258 67.47 69.66 62.93
Marfa, TX 272 66.66 58.40 63.44
ICarmel-by-the-Sea 283 63.15 58.89 66.19
Jackson, WY 334 71.26 74.44 71.75
Whitefish, MT 319 61.10 54.70 69.30
Piedmont, CA 352 65.11 62.33 75.44
Breckenridge, CO 373 70.64 60.27 69.32
Healdsburg, CA 455 74.29 78.79 67.26
Bar Harbor, ME 603 74.41 54.25 65.60
Park City, UT 606 73.48 63.07 69.60
Taos, NM 620 69.91 62.84 62.92
Boerne, TX 718 68.06 74.57 68.73
Ouray, CO 749 75.97 74.90 77.48
Big Bear Lake, CA 866 73.86 65.48 61.22
lAshland, OR 927 64.75 68.97 67.50
Boulder City, NV 976 67.33 72.95 71.55
Truckee, CA 1027 64.30 63.54 65.83
Sedona, AZ 1032 73.25 70.23 70.34
Los Gatos, CA 1082 69.73 76.65 70.14

Table 3. Probability of route failure in each city
generated by the different routing methods, at a return
probability of 30%.
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yields distinct results, with the following
observable characteristics for each approach

4.1 Nearest Neighbor Heuristic (NNH) The
results of the NNH algorithm, shown in Figure 10,
indicates that the resulting distance exhibits a direct
linear relationship with the total number of nodes,
with  NNH showing a slope of about 110
meters/node. In terms of the probability of failure,
there is high scatter, but the trend remains within
the range of 60 to 80%, irrespective of city size.
Finally, due to its simplicity, NNH proved to be the
routing method that required the least processing
time for large cities, as shown in Table 3.

4.2 Saving Algorithm Although the results for the
Saving Algorithm method are quite similar to
NNH, a closer inspection reveals that the resulting
distance is slightly shorter on average, particularly
in large cities (Figure 10). When considering the
probability of failure, the Saving Algorithm
yielded overall better results (lower failure rate)

Name of Number |  processing Time (s)
Sample City | 0 0t "oy Teaving | sA
sections g

Crested Butte, CO 98 1.15 0.58 8.88

Leavenworth, WA 113 1.33 1.09 10.23
(Calistoga, CA 221 1.44 1.13 25.49
Moab, UT 239 1.86 1.51 28.76
Sausalito, CA 258 2.04 1.81 30.81

Marfa, TX 272 1.66 1.59 42.69
Carmel-by-the-Sea, CA 283 2.82 2.49 45.74
Jackson, WY 334 2.8 2.62 63.17
Whitefish, MT 319 485 4.04 53.04
Piedmont, CA 352 4.08 3.86 59.34
Breckenridge, CO 373 3.72 5.13 77.53
Healdsburg, CA 455 5.00 6.84 102.51
Bar Harbor, ME 603 8.92 13.85 |146.92
Park City, UT 606 10.40 1461 |177.53
Taos, NM 620 10.11 1477 |180.06
Boerne, TX 718 14.60 16.55 |254.13
Ouray, CO 749 18.84 25.03 |244.42
Big Bear Lake, CA 866 27.77 38.18  [362.97
lAshland, OR 927 34.22 4833 [513.94
Boulder City, NV 976 28.63 4914 |564.07
Truckee, CA 1027 34.81 56.57 |577.27
Sedona, AZ 1032 38.64 57.46 |517.80
Los Gatos, CA 1082 46.04 65.72 |603.01

Table 4.  Processing time of the routes in each city
generated by the three different routing methods.
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Figure 9. Total number of intersections and total route
distance, with a linear trendline.
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distance, with a linear trendline, excluding outliers.
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probability of failure, with a linear trendline.
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than the other methods, with the difference being
clearly noticeable in small cities, as indicated in
Table 4.

4.3 Simulated Annealing (SA) The results for
Simulated Annealing (SA) showed a short distance
for small cities, but for large cities, the trendline
clearly indicates that the distance increases rapidly
with increasing number of nodes, with Figure 10
showing a slope of around 200 meters/node. In the
case of failure probability, SA exhibited a high
degree of scatter but remained constant within the
60 to 80% range, similar to NNH. Finally, the SA
method required a significantly longer processing
time compared to the others, as illustrated in Table
3 and Figures 12 and 13.
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Figure 12. Total number of intersections and the
processing time, with a polynomial trendline.
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Figure 13. Total number of intersections and the
processing time, with a linear trendline.
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4.4 Probability of Package Return Figures 14-16
display the results of testing different values for the
probability of package return, p. At p = 0, the
probability of failure is 0%, indicating that if no
returns occur, the system will not experience a
failure. For values between p = 0.05 — 0.35, there is
a significant increase in the probability of failure.
At the higher end of this range, the rate of growth
in failure probability decreases before approaching
100% failure at p = 0.40 — 0.50. The relationship
between the probability of return and the
probability of failure is clearly nonlinear and
closely resembles a sigmoid curve.
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Figure 14. Package return probability and failure
probability for the NNH routing method.
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Figure 15 . Package return probability and failure
probability for the Saving Algorithm routing method.
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Figure 16. Package return probability and failure
probability for the SA routing method.
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IV. CONCLUSION

The study showed that the developed mathematical
models can be effectively used to determine the
optimal vehicle route for transportation when there
is a probability of package returns. This outcome is
explained by classifying the routing approaches.
Following Liu F. et al. (2023), NNH and the Saving
Algorithm fall under the same category of
constructive heuristics, which build the route from
scratch, leading to generally similar resulting
distances. Simulated Annealing (SA), however, is
a metaheuristic method, which works by iteratively
improving an initially random route. Consequently,
in large cities with a significant number of nodes,
it is statistically more challenging for the stochastic
process of SA to randomly discover a pattern that
results in a shorter distance. Nevertheless, when
SA is applied to smaller cities with fewer nodes, it
can successfully find patterns that yield shorter
distances, leading to results that are better than both
NNH and the Saving Algorithm.

In terms of the probability of failure, the results
showed a generally similar trend across all route
generation methods. However, in small cities, the
Saving Algorithm was found to have a slightly
lower probability of failure compared to the other
methods. Regarding processing time, NNH, being
the simplest method, consumed the least time, with
the Saving Algorithm requiring a comparable
amount of time, while SA consistently
demonstrated a trend of significantly higher
processing time. In the study of varying
probabilities of package return, the relationship
between the probability of return and the
probability of failure was found to be nonlinear and
closely approximated a sigmoid curve that
approaches its maximum value at p = 0.40 — 0.50.

It must be noted that this research did not directly
solve the problem using multi-objective
optimization. The routes generated by each
algorithm were assessed a posteriori using the
failure rate function through simulation. Therefore,
the reduction of the failure objective (Equation 2)
is an indirect result derived from the route's
structure, and it was not optimized during the route
construction process itself. Finally, in terms of

WWW.15j0S.01g

practical application, the user needs to define what
the "optimal route" means for their purpose,
whether it is prioritized based on distance,
probability of failure, or time required for route
generation.
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