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Abstract 
 
In Thailand, prevalent euglenoid genera like Euglena, Phacus, Trachelomonas, Lepocinclis, and 
Strombomonas are typically found in organic-rich water, indicating hypereutrophic and eutrophic conditions. 
These euglenoids have diverse shapes, making accurate identification challenging. To address this, an object 
detection application was developed using deep-learning neural network models to reduce identification errors. 
Photographic datasets collected between June and October 2022, using both microscope and phone cameras in 
Khlong Mahasawat, Nakhon Pathom, Thailand, covered five Euglenoid genera. These datasets were manually 
labeled and used to train four deep-learning neural network models: Detectron2, YOLOv5, YOLOv7, and 
YOLOv8. Precision and recall of the models were improved through image augmentation, mimicking 
variations in image quality. The model which proved best for phytoplankton identification was YOLOv5l, 
which yielded precision and recall of 0.839 and 0.873, respectively. This model exhibited high performance in 
terms of the accuracy, with a low rate of misclassification. 
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I. INTRODUCTION 
 
Assessing water quality is important in 
environmental science research, and is quantified 
using physical properties such as color and turbidity, 
chemical properties such as dissolved oxygen (DO), 
pH, and salinity, and biological properties such as 
biological oxygen demand (BOD) and biodiversity. 
In Thailand, rapid urbanization and industrialization 
have depleted the water quality of the Chao Phraya 
and Tha Chin rivers, as evidenced through decreased 
DO levels, elevated ammonia-nitrogen content, and 
increased BOD (Simachaya, W., 2003). These 
changes significantly impact water biodiversity. 
Different water quality impacts the varieties and 
population density of phytoplankton; thus, the 
presence of certain species of phytoplankton can be 
used as an indicator of water quality. 
 
This research utilizes the AARL-PP (Assessment of 
Water Quality in Standing Water by Using 
Dominant Phytoplankton) developed by Y. 
Peerapormpisal (2007) as a method for assessing 

water quality. AARL-PP offers a chemical-free 
approach, allowing for long-term water quality 
assessment. It was developed from a two-part 
scoring system. First, an index of water quality based 
on a standard range of water quality tests was defined 
in six levels, based on research, using a score of 1-
10, with lower scores indicating clean water and 
higher scores indicating polluted water, as shown in 
Table 1.  

 
 

Score Water quality by 
trophic level 

General water 
quality 

1.0 - 2.0 Oligotrophic Clean 

2.1 - 3.5 Oligo-
mesotrophic Clean-moderate 

3.6 - 5.5 Mesotrophic Moderate 
5.6 - 7.5 Meso-eutrophic Moderate-polluted 
7.6 - 9.0 Eutrophic Polluted 
9.1 - 10.0 Hypereutrophic Very polluted 

 

Table 1 Water quality scores defined by trophic level 
and general water quality 
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For the second part, the dominant genera of 
phytoplankton found in the different water quality 
levels were identified and matched to the rating 
score. Three to five dominant genera of the 
phytoplankton were selected in accordance with 
their respective populations. During the assessment 
of water quality, phytoplankton was collected, 
identified and the quantity of each genus was 
determined. The score of each genus following the 
water quality in the second part was averaged and 
compared with the standard score of water quality 
from the first part. The AARL-PP Score has been 
tested in 50 water systems in northern Thailand and 
20 water systems each in northeastern and southern 
Thailand, with phytoplankton identification being 
more than 95% in agreement with physical and 
chemical water quality. 
 
Five genera of euglenoid were studied: Euglena, 
Phacus, Trachelomonas and Strombomonas, with 
scores in the AARL-PP score, 10, 8, 8, and 8, 
respectively, and Lepocinclis, though it should be 
noted that its score is yet to be determined within the 
AARL-PP system. The high scores assigned to these 
euglenoids suggest their prevalence in 
hypereutrophic waters, indicative of significant 
pollution levels. 
 
Euglenoids tend to have a highly variable 
morphology, which increases the chances of genus 
misidentification. As each genus of euglenoids 
represents a different AARL-PP score, genus 
identification affects the accuracy of score. One 
proposed solution is to detect the “eye spot”, a 
plastid-like organelle found in euglenoids. The eye 
spot is easily identified under a microscope, so 
accurately identifying the eye spot can be used to aid 
in the identification of euglenoids. We propose the 
development of an object detection program, using a 

deep-learning neural network model, to reduce the 
identification error and to further develop an 
accurate AARL-PP score assessment program.  
 
Deep learning models are artificial intelligence 
algorithms, mimicking human brain neurons, 
consisting of multiple layers of neural network. The 
models are trained in object detection and 
classification using datasets of images. In one 
training cycle, the deep learning model divides the 
image into grids, processes each grid with the 
neuron-like network of the mathematical model, and 
the result is shown. During each round of training, 
called an epoch, some parameters in the neural 
network change and the accuracy of the model 
improves. What makes each neural network model 
different is its architecture and size of the model. 
Models can be evaluated and compared with 
evaluation metrics such as precision, recall, and F1-
score (IBM, 2024) 
 
To create an object detection program, the dataset of 
images is divided into three parts: a training set, a 
validation set, and a test set, at an appropriate ratio. 
In the training set images, the objects of interest are 
labeled to locate and specify types of objects for the 
model to learn. The program is trained with the 
labeled training images, then validated and tested 
with unlabeled images. 
 
 
II. METHODS 
 
Data Collection and Image Preparation 
Water samples were collected using a 21-micron 
plankton net at coordinates 13°48'25"N, 100°17'3"E 
in Khlong Mahasawat canal, Phutthamonthon 
district, Nakhon Pathom, Thailand, from June to 
October 2022. Images of euglenoids were captured 

Euglenoid genus Sources of database Taxonomic references 
Euglena 
Ehrenberg, 1830 Images of water 

sample under 
microscope 

M.D. Guiry in Guiry, M.D. & Guiry, G.M. (2017) 

Phacus 
Dujardin, 1841 E.A. Molinari Novoa in Guiry, M.D. & Guiry, G.M. (2021) 

Trachelomonas 
Ehrenberg, 1834 M.D. Guiry in Guiry, M.D. & Guiry, G.M. (2017) 

Lepocinclis 
Perty, 1849 

Images of water 
sample under 
microscope and from 
Solito de Solis (2020) 

G.M. Guiry in Guiry, M.D. & Guiry, G.M. (2022) 

Strombomonas 
Deflandre, 1930 M.D. Guiry in Guiry, M.D. & Guiry, G.M. (2018) 

 

Table 2 Sources of database and taxonomic references for each genus of euglenoids 
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under a bright field microscope at 400x 
magnification, showcasing distinct morphologies of 
Euglena spp., Phacus spp., Trachelomonas spp., 
Lepocinclis spp., and Strombomonas spp. The 
classification of each genus was based on taxonomic 
references, including Wongrat et al. (2017) and 
AlgeaBase, a comprehensive global database curated 
by M.D. & G.M. Guiry, as shown in Table 2.  Images 
from videos by Solito de Solis (2020) were also used. 
Selected images were required to meet specific 
criteria: (1) inclusion of at least one genus of 
euglenoids, (2) presence of other organisms (e.g. 
different types of algae) or contaminants (e.g. 
sediment), (3) variation in color, brightness, and 
aperture, and (4) image resolution was not 
controlled. 
 
Images were labeled with the respective genera and 
the position of each euglenoid within the image. Two 
labeling methods were employed: bounding box and 
instance segmentation, according to the 
requirements of the object detection models. 
 
The image dataset was then split into three sets: a 
70% training set, a 20% validation set, and a 10% 
testing set. In total, 284 images of Euglena spp., 180 
images of Phacus spp., 115 images of 
Trachelomonas spp., 187 images of Lepocinclis spp., 
and 102 images of Strombomonas spp. were 
obtained after completing the data collection 
process. 
 
After completing the image labeling process, the 
next step involves augmenting the image dataset to 
simulate factors affecting genus identification, such 

as brightness and color of light from the microscope, 
focus and sharpness, position of euglenoid features, 
and obstructions within the image. Image 
augmentation techniques included cropping (with 
adjustments ranging from 0% to 30%), altering hue 
(ranging from -25% to +25%), applying cutout to 
portions of the image (with a cutout rate of 20%), 
inducing blur (ranging from 0 to 2 pixels), and 
adjusting brightness (ranging from -25% to +25%), 
as shown in Figure 1. Upon completion of image 
augmentation, the dataset consisted of a total of 
2,055 images. 
 
Model Training 
 Deep learning network models were developed 
based on four different neural network models: 
Detectron2 , YOLOv5 , YOLOv7 , and YOLOv8 , 
with five sub-models of YOLOv5 tested, including 
YOLOv5s, YOLOv5n, YOLOv5m, YOLOv5l, and 
YOLOv5x. The fundamental principle of these deep 
learning network models is to divide the images in 
the dataset into multiple cells, process each cell using 
a mathematical model, display the results, and then 
iteratively adjust the parameters in the model to 
improve the results. 
 
The YOLO models are designed with different sizes 
appropriate for varying dataset sizes, with the size of 
the model indicated by the letter at the end of the 
name, such as 's' representing small size (Jocher, 
2022) .  Currently, development has progressed to 
version 8, known as YOLOv8 . YOLOv5 , the fifth 
version, remains the most popular. The Detectron 
model is a methodical model for high-speed object 
detection and flexible use (Wu, Y., 2019). 

 

Figure 1 Datasets after image augmentation 
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Figure 2 Example of the results from Detectron2     
 
The model training involved 300 epochs, after which 
the following evaluation metrics were examined: 
classification accuracy, precision, recall/sensitivity, 
and F1-score. The F1-score is often used for 
comparing deep learning models, where models with 
higher F1 - scores have better classification abilities. 
Each metric is calculated with a formula based on the 
amount of True Positive (TP), True Negative (TN), 
False Positive (FP), and False Negative (FN). 
 
The ‘accuracy’ in classification is calculated based 
on the proportion of (TP + TN) to (TP + TN + FP + 
FN), while ‘precision’ is calculated based on the 
proportion of (TP) to (TP + FP), recall is calculated 
based on the proportion of (TP) to (TP + FN), and 
the F1 - score is the harmonic mean of precision and 
recall. Additionally, the mean Average Precision at 
k (mAP@k) is evaluated as an appropriate 
evaluation metric for ranking and sorting tasks, 
particularly suitable for assessing the quality of 
water using the AARL-PP score in object detection. 
Commonly used values for k are from 50 to 95.  

 
 

 
 

Figure 3 Example of the results from YOLOv5 
 
 
III. RESULTS AND DISCUSSION 
 
After building the model and conducting image input 
experiments, it was found that the model could detect 
images, as shown in Figures 2 and 3.  The detected 
genus of euglenoids is identified along with the 
confidence level. For example, in Figure 2, Euglena 
sp. Was detected with 1 0 0 %  confidence, and in 
Figure 3 , Euglena sp., Phacus sp., and an eye spot 
were detected with confidence levels of 88%, 90%, 
and 83%, respectively. 
 
After training the models with the obtained images 
using all 8 deep learning models, the results are 
presented in Table 3 .  The best-performing model 
was found to be YOLOv5l, as it achieved the highest  
 

 

Model Precision Recall F1-score mAP@50 mAP@50-95 

Detectron2 0.833 0.847 0.840 0.915 0.731 
YOLOv5   

 
  

   YOLOv5s 0.871 0.804 0.836 0.844 0.527 
   YOLOv5n 0.877 0.750 0.809 0.831 0.532 
   YOLOv5m 0.841 0.858 0.849 0.868 0.687 
   YOLOv5l 0.839 0.873 0.856 0.894 0.715 
   YOLOv5x 0.833 0.847 0.840 0.915 0.731 
YOLOv7 0.773 0.789 0.781 0.829 0.584 
YOLOv8 0.854 0.833 0.803 0.866 0.567 

 

Figure 3 Results from the training for all the models tested. 
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F1-score. The F1 -score represents the harmonic 
mean of precision and recall, which are two 
evaluation metrics for the learning performance of 
efficient models. Considering the harmonic mean of 
both variables provides a balanced assessment 
without bias towards any specific variable, ensuring 
an unbiased evaluation of the model's performance.  
 
Based on the evaluation metrics of the YOLOv5l 
model, it was able to classify each genus as shown in 
Table 4. During the training process, there were 
trends in the changes of evaluation metrics for each 
epoch, as depicted in Figure 4. 
 
From Figure 4 , it can be observed that the values of 
box loss, objectness loss, and classification loss 
decrease in each training epoch for both the training 
dataset (as shown in Figures 4A, 4B, and 4C) and the 

validation dataset (as shown in Figures 4F, 4G, and 
4H). The box loss indicates the model's ability to 
identify the center position of detected objects and 
predict bounding boxes around objects. Objectness 
represents the likelihood of objects being present in 
the area of interest in the image, while classification 
loss demonstrates the model's ability to predict 
object classifications. 
 
Figures 4D, 4E, 4I, and 4J show evaluation metrics 
such as precision, recall, mAP@50, and mAP@50-
95, respectively. The increase in values for these 
metrics across all four figures indicates an overall 
improvement in the model's performance with an 
increasing number of training epochs. 
 
Figure 5 depicts the graph of the relationship 
between precision and recall. The area under the 

 

 
 

Figure 4 Evaluation metrics graph of YOLOv5l 
 

 

 
 

Genus Precision Recall F1-score mAP@50 mAP@50-95 

Euglena 0.772 0.881 0.822 0.900 0.763 
Phacus 0.972 0.863 0.914 0.938 0.834 
Trachelomonas 0.732 0.952 0.827 0.921 0.841 
Lepocinclis 0.888 0.855 0.871 0.933 0.804 
Strombomonas 0.904 0.947 0.925 0.964 0.757 

 

Table 4 Evaluation metrics of YOLOv5l for each genus of euglenoids 
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graph indicates that the model exhibits both high 
precision and high recall, meaning it has a low rate 
of false positives and false negatives. The 
interpretation of the area under the graph is similar 
to that of the F1-score mentioned earlier, as it is a 
single variable that can be used to compare both 
accuracy and recall without bias or distortion in 
assessing the model's performance. 
 
From Figure 5, it can be observed that the model can 
detect eye spots with low efficiency, while the 
groups of euglenoids have higher efficiency. 
Therefore, it is not feasible to rely on an eye spot for 
identifying the type of euglenoid, as the model's 
ability to detect euglenoids is better than that of eye 
spot.  
 
In the confusion matrix shown in Figure 6, it is found 
that the model correctly identified the species 
Lepocinclis and Phacus with accuracies of 84% and 
82%, respectively. The most common 
misclassification was observed for Lepocinclis, 
which was misclassified as Euglena, Phacus, and 
Trachelomonas, while Phacus was misclassified as 
Euglena and Trachelomonas, as well as being 
labeled as the background in the image. The model 
correctly identified Euglena with an accuracy of 

88% but misclassified it as Lepocinclis and 
Trachelomonas. Conversely, there were two 
instances of misclassification: one for 
Strombomonas, which was correctly identified 95% 
of the time but misclassified as Trachelomonas, and 
one for Trachelomonas, which was correctly 
identified 90% of the time but misclassified as 
Euglena. 
 
Furthermore, the confusion matrix indicates that the 
model has difficulty distinguishing between eye 
spots and backgrounds (to be more specific, when 
there is no object in the image). Backgrounds are 
often misclassified as eye spots up to 75% of the 
time, suggesting that the model still struggles to 
differentiate between eye spots and backgrounds. 
 
It can be observed that each genus had 
misclassifications, mainly because some species 
exhibit similar morphological characteristics. For 
instance, Phacus sp. resembles a green leaf-like 
structure, and sometimes, it may lack color due to 
not being exposed to sunlight. This led the model to 
misclassify some of them as background rather than 
detecting them as part of the sample. Additionally, 
eye spots exhibit various colors, such as dark green, 
red, transparent red, and white, all of which are 

 
Figure 5 The Precision-Recall curve for the YOLOv5l model for Euglena, Eye spot, Lepocinclis, Phacus, Strombomonas, 

Trachelomonas, and All Types. 
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colors found in Euglena spp. Consequently, the 
model struggled to differentiate between the colors 
of Euglena spp. and the colors of the eye spots, 
resulting in low accuracy in eye spot identification. 
Furthermore, some genera of euglenoids share 
similar morphological features from certain angles, 
making it challenging to distinguish between them, 
such as Phacus sp. and Trachelomonas sp. 
 
With current information, the model could infer that 
the water source under study is hypereutrophic. 
However, further work must be done to develop a  
 

water quality assessment program capable of 
calculating AARL-PP scores because the assessment 
requires identifying and counting all phytoplankton 
genera in Peerapormpisal (2007), which exceeds the 
number of genera considered in this study. 
Therefore, to develop an accurate AARL-PP score 
calculation program, it is necessary to create a model 
that can identify all phytoplankton genera in 
Peerapormpisal (2007) and validate the program's 
scores against other water quality indicators such as 
DO and BOD values over various time periods and 
sampling locations. 
 

 
 

Figure 6 Confusion matrix of YOLOv5l, showing the truth and the predictions, dark blue represents a proportion of 1.0, 
while white represents 0.0. The intensity of the color corresponds to the proportion of data in each cell 
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IV. CONCLUSION 
 
In the water quality assessment, the identification of 
various phytoplankton genera is crucial. However, 
the freeform morphology within euglenoids makes 
species identification challenging, leading to high 
error rates. To mitigate this issue, a deep learning 
model was developed to reduce errors in species 
identification and further extended into a water 
quality assessment program, the AARL-PP scoring 
system. The YOLOv5l model achieved an F1-score 
of 0.856, the highest among the eight tested models. 
It demonstrated efficient detection of Euglena, 
Phacus, Trachelomonas, Lepocinclis, and 
Strombomonas species with similar performance 
levels, while unable to identify eye spots. This model 
exhibited high accuracy and low misclassification 
rates. In the future, it is possible to enhance the 
program by developing a model capable of 
identifying all phytoplankton genera in 
Peerapormpisal, Y. et al. (2007). Subsequently, the 
program's scores can be validated against other water 
quality indicators. 
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